COMPUTER SCIENCE (COMP-SCI)

Courses

COMP-SCI 5101 Discrete Structures Review for Graduate Students Credits: 1-3
A review of mathematical logic, sets, relations, functions, mathematical induction, and algebraic structures with emphasis on computing applications. Recurrence relations and their use in the analysis of algorithms. Graphs, trees, and network flow models. Introduction to Finite state machines, grammars, and automata. Students must have completed College Algebra before taking this course.

COMP-SCI 5102 Operating Systems Review for Graduate Students Credits: 1-3
This course covers concurrency and control of asynchronous processes, deadlocks, memory management, processor and disk scheduling, parallel processing, and file system organization in operating systems.
Prerequisites: Data Structures, Computer Architecture.

COMP-SCI 5103 Advanced Data Structures and Analysis of Algorithms Review for Graduate Students Credits: 1-3
A review of linear and hierarchical data structures, including stacks, queues, lists, trees, priority queues, advanced tree structures, hashing tables, dictionaries and disjoint-sets. Asymptotic analysis techniques and algorithms: from design strategy (such as greedy, divide-and-conquer, and dynamic programming) to problem areas (such as searching, sorting, shortest path, spanning trees, transitive closures, graph algorithms, and string algorithms) arriving at classical algorithms with efficient implementation. Introduction to the basic concepts of complexity theory and NP-complete theory. Students must have taken courses in Linear Algebra, Discrete Structures, Data Structures, and Applied Probability before taking this course.

COMP-SCI 5110 Optical Fiber Communications Credits: 3
Fiber optic cable and its characteristics, optical sources and transmitters, optical detectors and receivers, optical components such as couplers and connectors, WDM and OFDM techniques, modulation and transmission of information over optical fibers, design of optical networks, single and multihop fiber LANs, optical carrier systems.
Prerequisites: COMP-SCI 411.

COMP-SCI 5525 Cloud Computing Credits: 3
Cloud computing systems operate in a very large scale, and are impacting the economics and the assumptions behind computing significantly. This special topics course provides a comprehensive overview of the key technical concepts and issues behind cloud computing systems such as compute, storage and network resource virtualization and management. We will cover a range of topics of cloud computing including: Cloud system architectures and taxonomy, Computing virtualization techniques, Virtual machine resource management, Data center networking issues, Big data transfer protocols and management, Large scale distributed file system examples (Google File System), Cloud programming.
Prerequisites: CSEE 5110, COMP-SCI 431.

COMP-SCI 5531 Advanced Operating Systems Credits: 3
Components of an operating system, scheduling/routing mechanisms, process control blocks, design and test various operating system components.
Prerequisites: COMP-SCI 431.

COMP-SCI 5540 Principles of Big Data Management Credits: 3
This course will introduce the essential characteristics of Big Data and why it demands rethinking how we store, process, and manage massive amounts of structured and unstructured data. It will cover the core technical challenges in Big Data management i.e., the storage, retrieval, and analysis of Big Data. It will emphasize on fundamental concepts, analytical skills, critical thinking, and software skills necessary for solving real-world Big Data problems. Tools such as Apache Hadoop, Pig, Hive, HBase, and Apache Spark will be covered. Extensive reading of research papers and in-class presentations will be heavily emphasized in this class.
Prerequisites: COMP-SCI 431 and COMP-SCI 470.

COMP-SCI 5542 Big Data Analytics and Applications Credits: 3
Big data analytics focus on analyzing large amounts of data to find useful information and to make use of the information for better business decisions. This course introduces students to the practice and potential of big data analytics and applications. In this course, students will have hands-on experience with Big Data technologies (Hadoop and its ecosystems) and tools (Cloudera, RMahout, HBase) for the analysis of large data sets across clustered systems. Students will learn how to develop highly interactive applications for business intelligence.
Prerequisites: COMP-SCI 451.

COMP-SCI 5543 Real-time Big Data Analytics Credits: 3
This course teaches students fundamental theory and practice in the field of big data analytics and real time distributed systems for real time big data applications. In this course, students will have hands-on experience for the development of real-time applications with various tools such as Twitter's Storm, Apache Flume, Apache Kafka for real time analysis of stream data such as twitter messages and Instagram images.
Prerequisites: COMP-SCI 451.

COMP-SCI 5551 Advanced Software Engineering Credits: 3
Current concepts in software architecture and design, comparative analysis for design, object-oriented software design, software quality criteria for evaluation of software design. Introduction to metrics, project management and managerial ethics.
Prerequisites: COMP-SCI 451R.
COMP-SCI 5552A Formal Software Specification Credits: 3
Formal modeling including specification and deviation of abstract data types, completeness issues in the design of data types and data structures, implementation of data structures from a formal data type specification, verification of abstract to concrete data mapping.
Prerequisites: COMP-SCI 291, COMP-SCI 303.

COMP-SCI 5553 Software Architecture and Design Credits: 3
The course introduces a number of basic concepts and enabling technologies of software architecture, including architecture styles, architecture description languages, architecture-implementation mapping, and product line architectures. It also covers some advanced topics, such as the REST architecture style and Web Services. Students will read research papers, analyze the existing results, write critiques, give presentations, and exercise the research results with real examples. In addition, students will have an opportunity to work in groups and study the architecture of some real software systems.
Prerequisites: COMP-SCI 451R.

COMP-SCI 5555 Software Methods and Tools Credits: 3
Software methods and tools are extensively used in current software production to improve software productivity and quality. In this course, we are going to learn a number of popular software methods and tools being used in industry. These methods include object-oriented design and analysis (e.g. UML, design patterns), architecture styles, code generation, and unit testing. The covered software tools include Microsoft Project, IBM Rational Systems Developer, Eclipse Plug-ins, Emacs, JUnit, Subversion, and GIT. The course emphasizes practice, and students will be using these methods and tools to develop a software system, from the initial planning to the final deployment.
Prerequisites: COMP-SCI 349.

COMP-SCI 5560 Knowledge Discovery and Management Credits: 3
This course teaches students fundamental theory and practice in the field of knowledge discovery and management and also provides them with hands-on experience through application development.
Prerequisites: COMP-SCI 5551, COMP-SCI 461.

COMP-SCI 5561 Advanced Artificial Intelligence Credits: 3
AI systems and their languages, implementations and applications, case studies of various expert systems, current research topics in AI, logic programming using PROLOG.
Prerequisites: COMP-SCI 461.

COMP-SCI 5565 Introduction to Statistical Learning Credits: 3
Introduction to Machine Learning; Multivariate Distributions; Information Theory; Linear Algebra (Eigenanalysis); Supervised/Unsupervised Learning, Classification/Regression; Linear/Non-linear Learning; Introduction to Bayesian Learning (Bayes rule, Prior, Posterior, Maximum Likelihood); Parametric/Non-parametric Estimation. Recommended preparation: MATH 300; Familiarity with MATLAB.
Prerequisites: COMP-SCI 394R.

COMP-SCI 5566 Introduction to Bioinformatics Credits: 3
This course introduces students to the field of Bioinformatics with a focus on understanding the motivation and computer science behind existing Bioinformatic resources, as well as learning the skills to design and implement new ideas.
Prerequisites: COMP-SCI 303, a course or background in Biology (Genomics or Meta Models preferred).

COMP-SCI 5567 Machine Learning for Data Scientists Credits: 3
This course teaches the theoretical basis of methods for learning from data, illustrated by examples of applications to several domains. Recommended preparation: COMP-SCI 5565.
Prerequisites: COMP-SCI 303, COMP-SCI 394R.

COMP-SCI 5568 Fundamentals of Probabilistic Graphical Models Credits: 3
Many real world systems are probabilistic in nature. Probability theory gives us the basic tools for modeling many real world systems, allowing us to understand complex behavior. Probabilistic graphical models allow us to model complex probabilistic relationships using graphs. This framework, which spans methods such as Bayesian networks and Markov networks, allows us to manipulate complex probability distributions that often involve hundreds or even many thousands of variables. These methods have been used for an enormous range of applications, which include: web search, turbo coding, robot navigation, image identification, epidemic identification in complex networks, medical diagnosis and speech recognition. Recommended preparation: COMP-SCI 5565.
Prerequisites: COMP-SCI 303, COMP-SCI 394R.

COMP-SCI 5570 Architecture of Database Management Systems Credits: 3
Covers in detail, architecture of centralized database systems, database processing, management of concurrent transactions, query processing, query optimization, data models, database recovery, datawarehousing, workflow, World Wide Web and Database performance, and reviews the architecture of some commercial centralized database systems.
Prerequisites: COMP-SCI 431, COMP-SCI 470.
COMP-SCI 5572 Mobile Computing
Credits: 3
This course covers in detail the architecture of mobile and wireless network. It discusses and develops reveland concepts and algorithms for building mobile database systems (MDS), which is necessary for managing information on the air and E-commerce.
Prerequisites: COMP-SCI 5570.

COMP-SCI 5573 Information Security and Assurance
Credits: 3
This course deals with information security and assurance and covers the concepts necessary to secure the cyberspace. It introduces security models, assurance policies, security policies and procedures, and technology. It enables students to understand the need for information assurance, identify security vulnerabilities, and devise security solutions that meaningfully raise the level of confidence in computer systems. It teaches students how to design secured database and computer systems.
Prerequisites: COMP-SCI 470.

COMP-SCI 5574 Large Scale Semistructured Data Management
Credits: 3
This course will cover topics related to managing large scale semistructured data modeled using the Extensible Markup Language XML and the Resource Description Framework (RDF). This will include storing XML (e.g. natively, using a relational database), indexing XML (e.g. numbering schemes, structural indexes, sequencing paradigms), XML query processing algorithms (e.g. join-based, subsequence-based), RDF DATA STORAGE (e.g. triple stores, graph stores), RDF indexing and SPARQL query processing algorithms. The course will also cover emerging many core processor architectures (e.g. Intel Single-chip Cloud Computer) and the opportunities they provide for building next-generation semistructured data management solutions. Extensive reading of research papers and in-class presentations will be a core part of this class. Grades will be based on in-class presentations of research papers, exams, and a research project (to be done in groups).
Prerequisites: COMP-SCI 470.

COMP-SCI 5581 Parallel Computer Architecture I
Credits: 3
Parallelism in computer architecture, pipelined processors, array processors and multi-processor systems, algorithms for SISD, SIMD, MISD and MIMD organizations, vectorization, pipelining algorithms.

COMP-SCI 5582 Computer Vision
Credits: 3
The image is an essential form of information representation and communication in modern society. This course focuses on topics of computer vision, teaching computer how to understand images. Topics include image formation, color and texture features, key points detection, aggregation, subspace methods in image modeling, and deep learning image classification, with many applications in photography, media and entertainment, education, defense and medicine.

COMP-SCI 5590 Special Topics
Credits: 1-6
Selected topics in specific areas of computer science. May be repeated for credit when the topic varies.

COMP-SCI 5590AW Special Topics
Credits: 1-3

COMP-SCI 5590BD Special Topics
Credits: 1-3

COMP-SCI 5590CC Special Topics In Computer Science
Credits: 1-3

COMP-SCI 5590CI Special Topics
Credits: 1-3

COMP-SCI 5590CN Special Topics
Credits: 1-3

COMP-SCI 5590HI Special Topics
Credits: 1-3

COMP-SCI 5590MT Special Topics
Credits: 1-3

COMP-SCI 5590NN Special Topics
Credits: 1-3

COMP-SCI 5590OS Special Topics
Credits: 1-3

COMP-SCI 5590PB Special Topics
Credits: 1-3

COMP-SCI 5590PG Special Topics In Computer Science
Credits: 1-3

COMP-SCI 5590SA Special Topics In Computer Science
Credits: 1-3

COMP-SCI 5590WW Special Topics
Credits: 1-3

COMP-SCI 5590WX Special Topics
Credits: 1-3

COMP-SCI 5590XX Special Topics
Credits: 1-3

COMP-SCI 5590YL Special Topics
Credits: 1-3

COMP-SCI 5592 Design and Analysis of Algorithms
Credits: 3
Combinatorial analysis, searching and sorting, shortest path algorithms, spanning trees, search and traversal techniques, backtracking, branch and bound, heuristics, algebraic simplification and transformation.
Prerequisites: COMP-SCI 303 and COMP-SCI 404.
COMP-SCI 5596A Computer Security I: Cryptology Credits: 3
Study of theory, and algorithmic techniques, of the fields of number theory and cryptology, as they are applied in the general area of computer and network security.
Prerequisites: COMP-SCI 291.

COMP-SCI 5596B Computer Security II: Applications Credits: 3
Application of the algorithmic techniques learned in COMP-SCI 5596A to provide suitable security countermeasures to the variety of security threats across the spectrum of computing.
Prerequisites: COMP-SCI 5596A.

COMP-SCI 5597 Directed Readings Credits: 1-3
Readings in an area selected by the graduate student in consultation with a faculty member. Arrangements must be made prior to registration.

COMP-SCI 5598 Research Seminar Credits: 1-3
Graduate research based on intensive readings from the current research literature under the direction of a faculty member. Arrangements must be made prior to registration.

COMP-SCI 5599 Research and Thesis Credits: 1-6
A project investigation leading to a thesis, or written report under the direction of a faculty member. A prospectus must be accepted prior to registration.

COMP-SCI 5690 Advanced Special Topics Credits: 1-3
A lecture course presenting advanced research level topics. This course is intended to allow faculty and visiting scholars to offer special courses in selected research areas.
Prerequisites: Ph.D. Candidacy.

COMP-SCI 5690ND Advanced Special Topics Credits: 1-3

COMP-SCI 5697 Directed Readings Credits: 1-3
Readings in an area selected by the doctoral student in consultation with a doctoral faculty member. Arrangements must be made prior to registration.

COMP-SCI 5698 Advanced Research Seminar Credits: 1-3
Advanced research by a group of doctoral students based on intensive readings from the current research literature under the direction of one or more doctoral faculty. Original research results of each student are exchanged by presentations and group discussion. Arrangements must be made prior to registration.

COMP-SCI 5699A Research And Dissertation Research In Computer Science Credits: 1-12
Doctoral research in computer science.

COMP-SCI 5899 Required Grad Enrollment Credit: 1